MATH 800: Commutative Algebra Lecture 16 - Nov. 01, 2013

Navid Alaei

November 1, 2013

1 Localization and Prime Ideals

Definition (notation). Let R and S be as last time (recall that S denotes a multiplicatively closed subset of a commutative ring R). Let $\operatorname{Spec}_{S}(R)$ be the set of prime ideals of R which are disjoint from S.

Proposition. The ideal correspondence from last time is a bijection of lattices when restricted to $\operatorname{Spec}\left(S^{-1} R\right) \rightarrow \operatorname{Spec}_{S}(R)$. This is given by $B \longmapsto\{a \in R: a / 1 \in B\}$, with the inverse map given by sending $A \in \operatorname{Spec}_{S}(R)$ to $S^{-1} A$.

Proof. First check if $\mathfrak{p} \in \operatorname{Spec}_{S}(R)$ implies $S^{-1} \mathfrak{p} \in \operatorname{Spec}\left(S^{-1} R\right)$. Suppose $r_{1} / s_{1}, r_{2} / s_{2} \in$ $S^{-1} \mathfrak{p}$ then there is $s \in S$ such that $r_{1} r_{2} \in \mathfrak{p}$. But $\mathfrak{p} \cap S=\varnothing$ so $r_{1} r_{2} \in \mathfrak{p}$ by primality. So again by primality, $r_{1} \in \mathfrak{p}$ or $r_{2} \in \mathfrak{p}$ so $r_{1} / s_{1} \in S^{-1} \mathfrak{p}$ or $r_{2} / s_{2} \in S^{-1} \mathfrak{p}$.
Next check if $B \in \operatorname{Spec}\left(S^{-1} R\right)$ then $A=\{a \in R: a / 1 \in B\} \in \operatorname{Spec}_{S}(R)$. Suppose $a b \in A$. Then $a b / 1 \in B$ so $(a / 1)(b / 1) \in B$. So by primality $a / 1 \in B$ or $b / 1 \in B$. So $a \in A$ or $b \in B$. Lastly we must check that composition both ways is the identity. We saw last time that if B is just any ideal of $S^{-1} R$, then $S^{-1}\{a: a / 1 \in B\}=B$. So it remains to show for $\mathfrak{p} \in \operatorname{Spec}_{S} R$ the ideal $A=\left\{a: a / 1 \in S^{-1} \mathfrak{p}\right\}$ is equal to \mathfrak{p}. Take $a \in \mathfrak{p}$, then $a / 1 \in S^{-1} \mathfrak{p}$ so $a \in A$. Take $a \in A$ so that $a / 1 \in S^{-1} \mathfrak{p}$ so there exists $s \in S$ such that as $\in \mathfrak{p}$. But $\mathfrak{p} \cap S=\varnothing$ and \mathfrak{p} is prime so $a \in \mathfrak{p}$.

Corollary. We always have Kdim $S^{-1} R \leq K \operatorname{dim} R$.
Proof. Given $\mathfrak{p} \in \operatorname{Spec}_{S}(R)$ any chain with \mathfrak{p} at the top consists only of prime ideals disjoint from S so height of \mathfrak{p} is the same as height of $S^{-1} \mathfrak{p}$. So the result follows.

Proposition. R and S as before with $S \subset C$. If R is integral over C, then $S^{-1} R$ is integral over $S^{-1} C$.

Proof. Take $r / s \in S^{-1} R$. Then $r / 1$ is integral over $S^{-1} C$ by the same polynomial which makes r integral over C. Also, $1 / s \in S^{-1} C$ so it is certainly integral. Hence, $r / s=(r / 1)(1 / s)$ is integral over $S^{-1} C$. This gives the desired result.

2 Local Rings

Definition (notation). Take $\mathfrak{p} \in \operatorname{Spec}(R)$ and localize at $S=R \backslash \mathfrak{p}$. Then $S^{-1} \mathfrak{p}$ is the localization of R at \mathfrak{p}, also denoted $R_{\mathfrak{p}}$. Likewise $\mathfrak{p}_{\mathfrak{p}}$ is the image of \mathfrak{p} in $R_{\mathfrak{p}}$.
Proposition. Let \mathfrak{p}, R, and S be a above. Then

1. $R_{\mathfrak{p}}$ has a unique maximal ideal $P_{\mathfrak{p}}$.
2. \mathfrak{p} and $R_{\mathfrak{p}}$ have the same height, which is equal to Kdim $R_{\mathfrak{p}}$.

Proof. For the first assertion, let M be a maximal ideal of $R_{\mathfrak{p}}$. Let $A=\{a: a / 1 \in M\}$ and note $A \cap S=\varnothing$. But then $A \subseteq \mathfrak{p}$. So $M \subseteq \mathfrak{p}_{\mathfrak{p}}$. But M is maximal so $M=\mathfrak{p}_{\mathfrak{p}}$. For the second assertion, note the first equality follows since the prime ideals contained in \mathfrak{p} are preserved in $R_{\mathfrak{p}}$. The second equality now follows by the first assertion.

Example: Let $R=\mathbb{Z}$. Let $\mathfrak{p}=p \mathbb{Z}$ for some prime number p. Then $S=\mathbb{Z} \backslash \mathfrak{p}=\{n \in$ $\mathbb{Z}: \operatorname{gcd}(n, p)=1\}$. So $\mathbb{Z}_{p}=\{m / n: m \in \mathbb{Z}, \operatorname{gcd}(n, p)=1\}$.

Definition (Local Ring). A commutative ring R is said to be a local ring if R has a unique maximal ideal.

Observe that the localization of a commutative ring at a prime ideal \mathfrak{p} is clearly a local ring.

Proposition. The following are equivalent.

1. R is a local ring.
2. The set of all non-invertible elements of R is an ideal.
3. The sum of any two non-invertible elements is non-invertible.
4. If $a+b=1 \in R$, then a or b is invertible in R.

Proof. Note statement 2 clearly implies 3 . Let us begin by showing that 3 implies 4 . Note the contrapositive of 3 is: if $a+b$ is invertible, then a or b is invertible. So 4 is a special case of the contrapositive of 3 . Now to show 4 implies 3 , suppose $a+b=u$ for some unit u in R. Then $a u^{-1}+b u^{-1}=1$. So by statement 4 either $a u^{-1}$ or $b u^{-1}$ is invertible, so a or b is invertible. This implies the contrapositive of 3 , and hence 3 itself. Now to see that 3 implies 2, take a a non-invertible element of R and let $r \in R$. Consider $r a$. If $r a$ had an inverse, then $r a(r a)^{-1}=1$ so that $a\left(r(r a)^{-1}\right)=1$, a contradiction. This shows that $r a$ is non-invertible. Hence, the set of non-invertible element forms an ideal. Lastly, it remains to show that the first two statements are equivalent. To see that 2 implies 1 , let P be the set of non-invertible elements. By assumption, P is an ideal and is maximal as any other element adjoined to it would give 1. If Q were another maximal ideal with $Q \neq P$, then Q contains an element not in P, and hence a unit, a contradiction. Lastly, to show that 1 implies 2 , let P be the unique maximal ideal. Take $a \in R$ not invertible. Then $R a$ is an ideal so $R a \subseteq P$, and so $a \in P$.

Note: 1. If R is a local ring with maximal ideal P, then if $a \in P$ we have $1-a$ is invertible by statement 4 of the Proposition above.
2. If R is affine, then it is Noetherian, and so R_{P} is Noetherian. But R_{P} is not affine.

Proposition. Let R be a domain. Then $R=\bigcap_{P \text { maximal ideal of } R} R_{P}$.
Proof. Take $a \in \bigcap R_{P}$. Let $B=\{b \in R: b a \in R\}$. Note B is an ideal. Suppose $B \subsetneq R$. Then $B \subseteq P$ and P a maximal ideal of R. But $a \in \bigcap R_{P}$ so $a \in R_{P}$. This means $a=r / q$, where $r \in R$ and $q \notin P$. Then $q a \in R$ so $q \in B \subseteq P$, a contradiction. This gives $B=R ; 1 \in B$ and so $a \in R$. The other direction is trivial, and so we are done.

Proposition (Nakayama's Lemma). Let R be a local ring with maximal ideal P. Let M be a non-zero finitely generated R-module. Then $P M \neq M$.

Proof. Write $M=R a_{1}+\cdots+R a_{n}$, for some $a_{1}, \ldots, a_{n} \in M$ with n minimal. Suppose to the contrary that $P M=M$. Then we can write $a_{n}=\sum_{j=1}^{n-1} p_{j} a_{j}$ for suitable choices of $p_{1}, \ldots, p_{n-1} \in P$. Then

$$
\left(1-p_{n}\right) a_{n}=\sum_{j=1}^{n-1} p_{j} a_{j}
$$

for some $p_{n} \in P$. But $1-p_{n}$ is invertible so that a_{n} can be written in terms of remaining $n-1$ generators, contradicting the minimality of n.

Corollary. Let R, P, and M be as in Nakayama's Lemma. Then for every submodule $N \neq M$, we have $N+P M \neq M$.

Proof. Apply Nakayama's Lemma to M / N to get $P(M / N) \neq M / N$. So $N+P M \neq$ M.

Corollary. Let R, P, and M be as above. Let $B \subseteq M$ be such that the image of B in $M / P M$ spans $M / P M$ (as a vector space over R / P). Then B spans M.

Proof. Let $N=\sum R b_{j}$. The image of N in $M / P M$ is $M / P M$. So $N+P M=M$. Applying the previous corollary gives $N=M$.

Corollary. Let R be a domain and let $P \in \operatorname{Spec}(R)$. Suppose A is a non-zero ideal of R with $A \subseteq P$ such that A is finitely generated as an R-module. Then $P A \subsetneq A$.

Proof. If $P A=A$, then $P_{P} A_{P}=A_{P}$ in R_{P}, contradicting Nakayama's Lemma.

3 Artinian Implies Noetherian for Commutative Rings

Recall that we noted last time that if a module is both Artinian and Noetherian, then it must have a composition series. We now prove that the converse holds when the underlying ring is commutative.

Proposition. Let M be an R-module. If M has a composition series, then M is both Artinian and Noetherian.

Proof. Since M has a composition series, say of length n, any other composition series can be refined to a composition series that is equivalent and so has length at most n. So M is both Artinian and Noetherian.

Theorem 3.1. If R is an Artinian commutative ring, then R is Noetherian.
Proof. Suppose R is Artinian. Consider all ideals of R which are products of maximal ideals of R. Since R is Artinian, we may choose a minimal such ideal, say J. We would like to show that $J=0$. First, note if M is any maximal ideal of R, then $M J=J$ by minimality of J. Consequently, $J \subseteq M$. Otherwise, there exists $j \in J$ with $j \notin M$. This means $j \notin M J \subseteq M$, a contradiction. Second, J^{2} is also a product of maximal ideals so again $J^{2}=J$, by minimality of J. Now suppose $J \neq 0$. Consider the set of all ideals not annihilated by J; choose I minimal with respect to this property. Then

$$
0 \neq I J=I J^{2}=(I J) J
$$

so $I J=I$, by minimality of I. In particular, there exists $f \in I$ with $f J \neq 0$. So the minimality of I implies $I=(f)$; i.e., I is generated by f. Hence, there exists $g \in J$ with $f g=f$ (recall we had $I J=I$). So $(1-g) f=0$. But J is contained in every maximal ideal, and so g is also contained in every maximal ideal. But then $1-g$ is contained in no maximal ideal; in other words, $1-g$ is a unit. This immediately gives $f=0$, contradicting the assumption that $J \neq 0$.
Now we have $M_{1} \cdots M_{t}=0$ for some maximal ideals M_{i} of R. Consider, for each $s \geq 0$,

$$
\left(M_{1} \cdots M_{s}\right) /\left(M_{1} \cdots M_{s+1}\right)
$$

Note this is a vector space over R / M_{s+1}. Since any subspace is a submodule, this corresponds to an ideal of R containing $M_{1} \cdots M_{s+1}$. But R is Artinian so the vector space is Artinian, and thus is finite dimensional over R / M_{s+1}. But this means it has a composition series. Building these together we obtain a composition series for R; i.e., R is Noetherian.

