MATH 800: Commutative Algebra – Lecture 16 – Nov. 01, 2013

NAVID ALAEI

November 1, 2013

1 Localization and Prime Ideals

Definition (notation). Let R and S be as last time (recall that S denotes a multiplicatively closed subset of a commutative ring R). Let $\text{Spec}_{S}(R)$ be the set of prime ideals of R which are disjoint from S.

Proposition. The ideal correspondence from last time is a bijection of lattices when restricted to $Spec(S^{-1}R) \rightarrow Spec_S(R)$. This is given by $B \longmapsto \{a \in R : a/1 \in B\}$, with the inverse map given by sending $A \in Spec_S(R)$ to $S^{-1}A$.

Proof. First check if $\mathfrak{p} \in \operatorname{Spec}_S(R)$ implies $S^{-1}\mathfrak{p} \in \operatorname{Spec}(S^{-1}R)$. Suppose $r_1/s_1, r_2/s_2 \in S^{-1}\mathfrak{p}$ then there is $s \in S$ such that $r_1r_2 \in \mathfrak{p}$. But $\mathfrak{p} \cap S = \emptyset$ so $r_1r_2 \in \mathfrak{p}$ by primality. So again by primality, $r_1 \in \mathfrak{p}$ or $r_2 \in \mathfrak{p}$ so $r_1/s_1 \in S^{-1}\mathfrak{p}$ or $r_2/s_2 \in S^{-1}\mathfrak{p}$.

Next check if $B \in \operatorname{Spec}(S^{-1}R)$ then $A = \{a \in R : a/1 \in B\} \in \operatorname{Spec}_S(R)$. Suppose $ab \in A$. Then $ab/1 \in B$ so $(a/1)(b/1) \in B$. So by primality $a/1 \in B$ or $b/1 \in B$. So $a \in A$ or $b \in B$. Lastly we must check that composition both ways is the identity. We saw last time that if B is just any ideal of $S^{-1}R$, then $S^{-1}\{a : a/1 \in B\} = B$. So it remains to show for $\mathfrak{p} \in Spec_SR$ the ideal $A = \{a : a/1 \in S^{-1}\mathfrak{p}\}$ is equal to \mathfrak{p} . Take $a \in \mathfrak{p}$, then $a/1 \in S^{-1}\mathfrak{p}$ so $a \in A$. Take $a \in A$ so that $a/1 \in S^{-1}\mathfrak{p}$ so there exists $s \in S$ such that $as \in \mathfrak{p}$. But $\mathfrak{p} \cap S = \emptyset$ and \mathfrak{p} is prime so $a \in \mathfrak{p}$.

Corollary. We always have $Kdim S^{-1}R \leq Kdim R$.

Proof. Given $\mathfrak{p} \in \operatorname{Spec}_S(R)$ any chain with \mathfrak{p} at the top consists only of prime ideals disjoint from S so height of \mathfrak{p} is the same as height of $S^{-1}\mathfrak{p}$. So the result follows. \Box

Proposition. R and S as before with $S \subset C$. If R is integral over C, then $S^{-1}R$ is integral over $S^{-1}C$.

Proof. Take $r/s \in S^{-1}R$. Then r/1 is integral over $S^{-1}C$ by the same polynomial which makes r integral over C. Also, $1/s \in S^{-1}C$ so it is certainly integral. Hence, r/s = (r/1)(1/s) is integral over $S^{-1}C$. This gives the desired result. \Box

2 Local Rings

Definition (notation). Take $\mathfrak{p} \in \text{Spec}(R)$ and localize at $S = R \setminus \mathfrak{p}$. Then $S^{-1}\mathfrak{p}$ is the localization of R at \mathfrak{p} , also denoted $R_{\mathfrak{p}}$. Likewise $\mathfrak{p}_{\mathfrak{p}}$ is the image of \mathfrak{p} in $R_{\mathfrak{p}}$.

Proposition. Let \mathfrak{p} , R, and S be a above. Then

1. $R_{\mathfrak{p}}$ has a unique maximal ideal $P_{\mathfrak{p}}$.

2. \mathfrak{p} and $R_{\mathfrak{p}}$ have the same height, which is equal to Kdim $R_{\mathfrak{p}}$.

Proof. For the first assertion, let M be a maximal ideal of $R_{\mathfrak{p}}$. Let $A = \{a : a/1 \in M\}$ and note $A \cap S = \emptyset$. But then $A \subseteq \mathfrak{p}$. So $M \subseteq \mathfrak{p}_{\mathfrak{p}}$. But M is maximal so $M = \mathfrak{p}_{\mathfrak{p}}$. For the second assertion, note the first equality follows since the prime ideals contained in \mathfrak{p} are preserved in $R_{\mathfrak{p}}$. The second equality now follows by the first assertion. \Box

Example: Let $R = \mathbb{Z}$. Let $\mathfrak{p} = p\mathbb{Z}$ for some prime number p. Then $S = \mathbb{Z} \setminus \mathfrak{p} = \{n \in \mathbb{Z} : \gcd(n, p) = 1\}$. So $\mathbb{Z}_{\mathfrak{p}} = \{m/n : m \in \mathbb{Z}, \gcd(n, p) = 1\}$.

Definition (Local Ring). A commutative ring R is said to be a local ring if R has a unique maximal ideal.

Observe that the localization of a commutative ring at a prime ideal \mathfrak{p} is clearly a local ring.

Proposition. The following are equivalent.

- 1. R is a local ring.
- 2. The set of all non-invertible elements of R is an ideal.
- 3. The sum of any two non-invertible elements is non-invertible.
- 4. If $a + b = 1 \in R$, then a or b is invertible in R.

Proof. Note statement 2 clearly implies 3. Let us begin by showing that 3 implies 4. Note the contrapositive of 3 is: if a + b is invertible, then a or b is invertible. So 4 is a special case of the contrapositive of 3. Now to show 4 implies 3, suppose a + b = ufor some unit u in R. Then $au^{-1} + bu^{-1} = 1$. So by statement 4 either au^{-1} or bu^{-1} is invertible, so a or b is invertible. This implies the contrapositive of 3, and hence 3 itself. Now to see that 3 implies 2, take a a non-invertible element of R and let $r \in R$. Consider ra. If ra had an inverse, then $ra(ra)^{-1} = 1$ so that $a(r(ra)^{-1}) = 1$, a contradiction. This shows that ra is non-invertible. Hence, the set of non-invertible element forms an ideal. Lastly, it remains to show that the first two statements are equivalent. To see that 2 implies 1, let P be the set of non-invertible elements. By assumption, P is an ideal and is maximal as any other element adjoined to it would give 1. If Q were another maximal ideal with $Q \neq P$, then Q contains an element not in P, and hence a unit, a contradiction. Lastly, to show that 1 implies 2, let P be the unique maximal ideal. Take $a \in R$ not invertible. Then Ra is an ideal so $Ra \subseteq P$, and so $a \in P$.

- NOTE: 1. If R is a local ring with maximal ideal P, then if $a \in P$ we have 1 a is invertible by statement 4 of the Proposition above.
 - 2. If R is affine, then it is Noetherian, and so R_P is Noetherian. But R_P is not affine.

Proposition. Let R be a domain. Then $R = \bigcap_{P \text{ maximal ideal of } R} R_P$.

Proof. Take $a \in \bigcap R_P$. Let $B = \{b \in R : ba \in R\}$. Note B is an ideal. Suppose $B \subsetneq R$. Then $B \subseteq P$ and P a maximal ideal of R. But $a \in \bigcap R_P$ so $a \in R_P$. This means a = r/q, where $r \in R$ and $q \notin P$. Then $qa \in R$ so $q \in B \subseteq P$, a contradiction. This gives B = R; $1 \in B$ and so $a \in R$. The other direction is trivial, and so we are done.

Proposition (Nakayama's Lemma). Let R be a local ring with maximal ideal P. Let M be a non-zero finitely generated R-module. Then $PM \neq M$.

Proof. Write $M = Ra_1 + \cdots + Ra_n$, for some $a_1, \ldots, a_n \in M$ with *n* minimal. Suppose to the contrary that PM = M. Then we can write $a_n = \sum_{j=1}^{n-1} p_j a_j$ for suitable choices of $p_1, \ldots, p_{n-1} \in P$. Then

$$(1-p_n)a_n = \sum_{j=1}^{n-1} p_j a_j,$$

for some $p_n \in P$. But $1-p_n$ is invertible so that a_n can be written in terms of remaining n-1 generators, contradicting the minimality of n.

Corollary. Let R, P, and M be as in Nakayama's Lemma. Then for every submodule $N \neq M$, we have $N + PM \neq M$.

Proof. Apply Nakayama's Lemma to M/N to get $P(M/N) \neq M/N$. So $N + PM \neq M$.

Corollary. Let R, P, and M be as above. Let $B \subseteq M$ be such that the image of B in M/PM spans M/PM (as a vector space over R/P). Then B spans M.

Proof. Let $N = \sum Rb_j$. The image of N in M/PM is M/PM. So N + PM = M. Applying the previous corollary gives N = M.

Corollary. Let R be a domain and let $P \in Spec(R)$. Suppose A is a non-zero ideal of R with $A \subseteq P$ such that A is finitely generated as an R-module. Then $PA \subsetneq A$.

Proof. If PA = A, then $P_PA_P = A_P$ in R_P , contradicting Nakayama's Lemma.

3 Artinian Implies Noetherian for Commutative Rings

Recall that we noted last time that if a module is both Artinian and Noetherian, then it must have a composition series. We now prove that the converse holds when the underlying ring is commutative.

Proposition. Let M be an R-module. If M has a composition series, then M is both Artinian and Noetherian.

Proof. Since M has a composition series, say of length n, any other composition series can be refined to a composition series that is equivalent and so has length at most n. So M is both Artinian and Noetherian.

Theorem 3.1. If R is an Artinian commutative ring, then R is Noetherian.

Proof. Suppose R is Artinian. Consider all ideals of R which are products of maximal ideals of R. Since R is Artinian, we may choose a minimal such ideal, say J. We would like to show that J = 0. First, note if M is any maximal ideal of R, then MJ = J by minimality of J. Consequently, $J \subseteq M$. Otherwise, there exists $j \in J$ with $j \notin M$. This means $j \notin MJ \subseteq M$, a contradiction. Second, J^2 is also a product of maximal ideals so again $J^2 = J$, by minimality of J. Now suppose $J \neq 0$. Consider the set of all ideals not annihilated by J; choose I minimal with respect to this property. Then

$$0 \neq IJ = IJ^2 = (IJ)J,$$

so IJ = I, by minimality of I. In particular, there exists $f \in I$ with $fJ \neq 0$. So the minimality of I implies I = (f); i.e., I is generated by f. Hence, there exists $g \in J$ with fg = f (recall we had IJ = I). So (1 - g)f = 0. But J is contained in every maximal ideal, and so g is also contained in every maximal ideal. But then 1 - g is contained in no maximal ideal; in other words, 1 - g is a unit. This immediately gives f = 0, contradicting the assumption that $J \neq 0$.

Now we have $M_1 \cdots M_t = 0$ for some maximal ideals M_i of R. Consider, for each $s \ge 0$,

$$(M_1 \cdots M_s)/(M_1 \cdots M_{s+1}).$$

Note this is a vector space over R/M_{s+1} . Since any subspace is a submodule, this corresponds to an ideal of R containing $M_1 \cdots M_{s+1}$. But R is Artinian so the vector space is Artinian, and thus is finite dimensional over R/M_{s+1} . But this means it has a composition series. Building these together we obtain a composition series for R; i.e., R is Noetherian.